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Societies are complex systems, which tend to polarize into sub-
groups of individuals with dramatically opposite perspectives.
This phenomenon is reflected—and often amplified—in online
social networks, where, however, humans are no longer the only
players and coexist alongside with social bots—that is, software-
controlled accounts. Analyzing large-scale social data collected
during the Catalan referendum for independence on October 1,
2017, consisting of nearly 4 millions Twitter posts generated by
almost 1 million users, we identify the two polarized groups of
Independentists and Constitutionalists and quantify the structural
and emotional roles played by social bots. We show that bots act
from peripheral areas of the social system to target influential
humans of both groups, bombarding Independentists with violent
contents, increasing their exposure to negative and inflammatory
narratives, and exacerbating social conflict online. Our findings
stress the importance of developing countermeasures to unmask
these forms of automated social manipulation.

computational social science | complex networks | machine learning |
sociotechnical systems | human behavior

Societies consist of agents engaging in multimodal social
actions with one another in a complex system (1). This

“society-as-system” metaphor inspired many computational
studies aimed at identifying, at a microscopic level, how social
interactions might lead to emergent global phenomena such as
social segregation (2), spreading of information (3), and behav-
ior (4, 5). The recent advent of digital communication systems
has dramatically shifted the investigation from empirical social
interactions in the physical world to online social platforms
and technology-mediated interactions (6). Online platforms rev-
olutionized the society-as-system metaphor (7) by providing
detailed datasets suitable for large-scale investigation of patterns
reflecting real-world social phenomena such as the presence and
role of influencers in information diffusion (8–11), the effect of
emotions on social ties (12), or the polarization of agents accord-
ing to stances (13–15). Social media yields an invaluable source
of information for learning the mechanisms behind social influ-
ence and social dynamics (16–18). However, digital systems are
not populated only by humans, but also by software-controlled
agents, better known as bots, programmed to pursue specific
tasks, from sending automated messages to assuming specific
social or antisocial behaviors (19, 20). Similarly to human inter-
actions, bots might be able to affect structure and function of
a social system (18). Understanding how human–bot dynamics
drive social behavior is of utmost importance: As postulated by
the theory of embodied cognition (21), the presence of robots in
a social system affects the way humans perceive social norms and
how they interact with one another and with the robots.

Here, we show how social bots play a central role in the col-
lective dynamics taking place on online social systems during a
voting event, namely, the Catalan Referendum of October 1,
2017. To this end, we monitored the discussion on a popular
microblogging platform (Twitter) from September 22, 2017, to
October 3, 2017. We discovered that bots generated specific con-
tent with negative connotation that targeted the most influential

individuals among the group of Independentists (i.e., Catalan
independence supporters). For our analysis, we first detect bots
by using a cutting-edge scalable approach and find that nearly
one in three users in this conversation is a bot.

Results
By disentangling the observed social interactions in retweets
(who reshares the content posted by whom), replies (who
responds to whom), and mentions (who attracts the attention
of whom), we find that humans and bots share similar tempo-
ral behavioral patterns in the volume of messages. Both groups
display daily excursions resembling a circadian rhythm, with a
dramatic increase in the activity rate on October 1. Fig. 1 B,
Lower, shows that bots produced 23.6% of the total number of
posts during the event (retweets and mentions show compara-
ble values). Notably, the percentage of Replies generated by
bots increases to 38.8%, suggesting that during this event, bots
preferred this form of targeted responses.

To better characterize the nature of the observed interac-
tions, we investigate the targets of such intensive social activities.
Fig. 1A and SI Appendix, Fig. S1A summarize the structure
of human–bot interactions. While humans interact mostly with
other humans, 19% of overall interactions are directed from bots
to humans, mainly through retweets (74%) and mentions (25%),
SI Appendix, Fig. S1 B–D.

To shed light on the nature of these human–bot interactions,
we focus on the semantic content of posted messages. Sentiment
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Fig. 1. Social activity of humans and bots over time. (A) Flowchart of human–bot Twitter interactions across the whole time window. A total of 19% of the
considered interactions are from bots to humans. (B, Upper) The volume per minute for different social actions (tweet, retweet, mention, and reply). (B,
Lower) The fraction of volume generated by bots. Shaded areas highlight October 1, 2017, the day of the Catalan referendum.

analysis (Materials and Methods) reveals interesting differences
in emotional trends between humans and bots (Fig. 2). Retweets
directed to bots do not display any evident deviation from neu-
trality (0 sentiment score), while interactions directed toward
humans display marked positive and negative trends of sentiment
intensity. An analogous behavior happens also for mentions
(light colors). These differences indicate that bot-targeted inter-
actions are not significantly influenced by the underlying social
dynamics, and hence the analysis should focus more on human-
targeted interactions (i.e., human-to-human and bot-to-human).
The sentiment of human-to-human interactions displays marked
trends in different phases: (i) a trending positive average sen-
timent score in the days before September 30 (Fig. 2, Upper,
HH); (ii) a sudden drop in sentiment starting from the midnight
of October 1 (Fig. 2, Lower, HH) after negative contents start
getting reshared; (iii) a peak of negative sentiment in the mid-
day of October 1; and (iv) a later increase in sentiment toward
neutrality. These sentiment scores and their related content both
indicate that human-to-human interactions are a powerful proxy
of the dynamics of underlying real-world social systems. The
drastic drop of sentiment score from positive to negative among
>300,000 human users signals the presence of polarization in
the social system, due either to opposing factions exchanging
positive/negative messages or to the influence of nonhumans.
Fig. 2 also highlights important differences between human and
bot interactions: The drop in average sentiment evident in bot-
to-human interactions is not present in bot-to-bot interactions.
This difference indicates that automated content generated and

endorsed by bots is not influenced by the social dynamics rela-
tive to the referendum: On average, bot-to-bot interactions are
not influenced by the human polarization relative to the refer-
endum. Such human polarization is captured by bot-to-human
interactions instead: This distinctiveness indicates that bot-to-
human interactions promote human-generated content, which is
subject to polarization.

Identifying user polarization (i.e., users being in favor of or
against a given event or topic) cannot be performed with sen-
timent only (22). We overcome this limitation by exploiting a
synergy between the network structure of social actions and
their emotional intensities, with the aim of identifying stances
focused on the voting event in our dataset: Constitutionalists
and Independentists to the Catalan referendum. Notice that our
network-enhanced stance detection analysis has two major ele-
ments compared with previous approaches (22), as it not only
considers semantic features of messages but also the structure of
their exchanges and the nature of their recipients.

To capture pivotal trends in the structure of social interactions,
we focus on the core of the network of social interactions (Mate-
rials and Methods). It is well documented that people tend to
retweet each other as a form of social endorsement (23). To filter
out spurious or infrequent interactions, we consider the available
multimodal information and focus on strong social interactions
(i.e., those actions where users perform at least a retweet and
either a reply or a mention) during the considered time win-
dow. We use strong ties to identify the network core, shown in
Fig. 3. To determine the two underlying polarized groups, we
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Fig. 2. Sentiment evolution before, during, and after the Catalan referendum. Average (Avg.) sentiment scores for retweets (darker colors) and mentions
(lighter colors) over time for human-to-human (HH), human-to-bot (HB), bot-to-human (BH), and bot-to-bot (BB). The gray box highlights the day before
the Catalonia ballot. While bot-to-bot and human-to-bot display no clear trend over time, human interactions display a positive pattern of sentiments
until September 30, after which a drop in sentiment up to negative values appears in human-to-human and bot-to-human interactions. In the lower right,
negative tweets are generated around 1:00 AM October 1, but they start spreading only in the morning, after 7:00 AM. Positive tweets start spreading
after noon.

look for a partition that minimizes intergroup interactions and
use the Fiedler vector approach (24) for an efficient estimation
(compare Materials and Methods). The results are shown in Fig.
3A. Each group includes ∼6,300 users, with 18% (12%) of them
being bots in group 1 (group 2). Within both groups, human-
to-human interactions are the most frequent ones, followed by
bot-to-human (Fig. 3B). Humans in group 1 direct toward bots

almost 100 times more social interactions than in group 2, sug-
gesting a larger influence of bots on the social dynamics in group
1 rather than in group 2. Bot–bot interactions across the two
groups are absent since bots mostly interact with humans.

To understand the importance of humans and bots in this
network, we calculate the PageRank, a widely used measure of
users’ importance in online networks (25). On average, we find

Group 1 Group 2

Emotional Interactions

Humans

Bots

Group 1 Group 2

(c)

Group 1 Group 2

Social Interactions

Humans

Bots

Bots Humans

Negative Neutral Positive 

B

A

C
Fig. 3. Network of Twitter interactions. (A) Visualization of the network among users classified with respect to faction and bot/human class. Nodes indicate
users, and links encode their social interactions (retweet and reply or mention). (A, Upper) Subnetworks corresponding to the factions consisting of humans.
(A, Lower) Subnetworks of bot factions. Colors encode interactions started by humans (blue) or bots (red). (B) Total traffic of Twitter interactions among
humans and bots. Thicker edges indicate higher traffic volume. (C) Median sentiments of Twitter interactions among factions. Interactions with average
negative (positive) sentiment are in dark red (green). Black corresponds to interactions on average compatible with neutrality. Distributions of sentiments
are tested against neutrality (i.e., 0 sentiment score) with a sign test at a 95% confidence level.
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that humans are 1.8 times more central than bots, highlighting
that the latter tend to act from the periphery of the social
system. Interestingly, despite their peripheral position, bots tar-
get their interactions strategically, mostly directing their activity
toward human hubs, playing an influential role in the system. If
we define the in-degree of a user as the number of its incom-
ing interactions, then the in-degree of humans with respect to
interactions incoming only from bots correlates positively with
the in-degree with respect to interactions incoming only from
humans (Kendall tau κ≈ 0.62, P < 10−4), indicating that bots
tend to target their interactions mainly with the most connected
humans. Analogously, humans also tend to interact mainly with
the most connected bots (Kendall tau κ≈ 0.75, P < 10−4). To
verify if these effects are genuine, we performed the same anal-
ysis on randomized realizations of the network while preserving
the empirical degree distribution. In this test, the observed cor-
relations are no longer present, supporting the hypothesis of a
strategic targeting of social interactions. Since hubs in online
social networks like Twitter characterize broadcasters and influ-
encers (10), the above results suggest that bots interacting with
human hubs can influence the social dynamics of both groups,
while remaining in the periphery of the microblogging social sys-
tem. The volume of bot/human endorsements in the two groups
and the fact that bots mainly target human hubs indicate that
social bots can be influential: They promote human-generated
content from hubs, rather than automated tweets, and target sig-
nificant fractions of human users—as evidenced by the fraction
of endorsements shown in Fig. 3B and reported in SI Appendix.

To harness the emotional structure of the links in the net-
work core, we perform a sentiment analysis of the interactions
among humans and bots in the two groups (Fig. 3C and Materi-
als and Methods). The resulting atlas of emotional interactions
indicates that the average sentiments of human-to-human and
bot-to-human interactions are negative within group 1 and pos-

itive within group 2. This substantial difference in sentiment
suggests that the two identified groups endorse their exchanged
messages in a different way. In fact, group 1 preferentially
endorses negative content. The volumes and sentiment polari-
ties reported in Fig. 3C highlight an important mechanism of
social contagion played by bots. First, bots direct significant
fractions of endorsements to human users, thus actively expos-
ing humans to some type of automatically generated content.
However, this content crucially depends on the targets of the
interaction: The polarity of endorsements from bots to humans
coincide in both groups with the average sentiment of human–
human interactions. In turn, this indicates that bots exploit and
promote human-generated content, with the same polarity of the
endorsements in a given group of human users. In this way, social
bots accentuate the exposure of opposing parties to negative
content, with the potential to exacerbate social conflict online.

To characterize the semantic nature of group-specific endorse-
ments (e.g., aggressive, pessimistic, etc.), we build and analyze
networks of hashtag co-occurrences (Materials and Methods),
providing a proxy of users’ mindset—that is, the way users per-
ceive and associate concepts (26–28). A consistency analysis
indicates that the two groups post messages about a common
set of 4,132 hashtags but associate the corresponding concepts in
different ways. Fig. 4 shows how the same hashtags co-occur dif-
ferently in group 1 and 2. Capitalizing on this finding, we focus on
those specific concepts that are most important for one group but
most peripheral in the other one. We quantify the importance
of concepts by identifying the hashtags with the highest degree,
strength, and closeness centrality—characterizing number of dif-
ferent associations, total frequency of co-occurrences, and how
closely hashtags are associated, respectively (26, 29, 30).

In group 1, concepts of “freedom” and “independence” are
dramatically associated with “fight,” “shame” against the Spanish
government, “dictatorship,” and blame against “police violence.”

A B

Fig. 4. Hashtag ecosystem reveals group identity. Hashtags are coupled together if they appear simultaneously in a message, building a network of
concepts. Analyzing the hashtag networks obtained from each group, we identify the hashtags which are ranked similarly (A) and very differently (B) in
the two groups to visualize the corresponding neighboring concepts. In A, low-ranked hashtags coexist in both groups and do not allow us to identify the
underlying ideology of each group. In B, top-ranked hashtag that exist only in group 1 are strongly related to concepts of freedom, independence, fight,
shame against the Spanish government, dictatorship, and blame against police violence, providing evidence that group 1 consists of Catalan Independentists.
Remarkably, concepts related to “sonunesbesties” (translated as “they are beasts”)—highlighted in B—are posted by bots only, whereas the other hashtag
networks have contributions by both humans and bots. Note that, for clarity, in B we show only hashtags fully characterizing accounts associated with
Independentists.
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In group 2, these associations are completely missing, providing
strong quantitative evidence that group 1 consists of Indepen-
dentists. By combining this finding with the analysis shown in
Fig. 3, which highlights the existence of only two groups, we
deduce that group 2 consists of Constitutionalists and non-
Independentists. We further distinguish between associations
coming from bots and humans. Negative associations for the con-
tent of group 1 come exclusively from bots, highlighting their
intent of bolstering conflict.

To enrich the results provided by our data-driven sentiment
and network analyses, we perform human coding of 2,413 tweets
posted by humans and social bots (SI Appendix). The analysis
confirms the trends of sentiment polarities for human-to-human
interactions, with shared content becoming increasingly pes-
simistic as a reaction to the violence registered on the onset
of the referendum day. Moreover, human coding of the con-
tent of automated tweets confirms that bots mainly promoted
news-media titles from hubs, mimicking the trend of human
emotions and hence boosting sentiments of alarmism, fear, and
reprobation during and after the vote.

Discussion
Through the synergy of cutting-edge techniques in bot detec-
tion, multilanguage sentiment analysis, network partitioning,
and semantic network analysis, we find strong evidence of two
opposing factions during a large-scale voting event. We pro-
vide quantitative findings that the captured online trends in the
dataset mirror meaningful events in the real world concerning
the voting timeline. Harnessing the structure and the semantic
content of social actions within a large-scale dataset, we iden-
tify factions as groups of people having opposite stances during
the Catalan referendum of October 1, 2017 (i.e., Independen-
tists and Constitutionalists). Our results demonstrate that bots
sustain each faction from the periphery of the online social net-
work structure by mainly targeting human influencers. Bots tend
to target human Independentists with messages evoking negative
sentiments and associating hashtags with negative connotations.
Importantly, we show that bots provide semantic associations, in
messages directed to the Independentists, that inspire fight, vio-
lence, and shame against the government and the police. In addi-
tion to promoting target-specific content generated by human
hubs, social bots achieved social contagion also by fabricating
automated content within specific communities of humans. The
negative associations highlighted in Fig. 4 were found only in
endorsements relative to group 1 and were completely absent in
messages within group 2. The specificity of such hatred-inspiring
semantic associations provides evidence that bots achieved dif-
ferent social contagion across the groups also by forging artificial
content.

While software-controlled agents might be beneficial to online
networked systems, [e.g., by improving the collective perfor-
mance of human groups (31)], their improper use can have
dramatic effects. Our findings support the hypothesis that bots
may influence information diffusion in social media systems
(18, 19), specifically by accentuating the exposure to negative,
hatred-inspiring, inflammatory content, thus exacerbating social
conflict online. This concerning trend, coupled with the emerg-
ing ability to control time-varying networks such as online social
systems (32), further motivates the crucial need for the develop-
ment of quantitative techniques like the one proposed here for
unmasking the social manipulation enacted by bots.

Materials and Methods
Data Collection. By following a consolidated strategy, we manually selected
a set of hashtags and keywords to collect messages (tweets) posted
to a microblogging platform (Twitter). The list contains various general
Catalan issue-related terms: #Catalunya, #Catalonia, #Catalogna, #1Oct,
#votarem, #referendum, and #1O. We monitored the Twitter stream and

collected data by using the Twitter Search application programming inter-
face (API), from September 22, 2017, to past the election day, on October 3,
2017: This allowed us to almost uninterruptedly collect all tweets contain-
ing any of the search terms. The data-collection infrastructure ran inside
Fondazione Bruno Kessler servers to ensure resilience and scalability. We
chose to use the Twitter Search API to make sure that we obtained all
tweets that contain the search terms of interest posted during the data-
collection period, rather than a sample of unfiltered tweets: This precaution
avoided incurring known sampling issues related to collecting data by using
the Twitter Stream API rather than the Search API. This procedure yielded
a large dataset containing ∼3.6 million unique tweets, posted by 523,000
unique users.

Bot Detection. Various strategies exist to label social media users as bots or
humans (19, 20). Here, we leveraged a scalable and accurate feature-based
approach (33). Account metadata carry a highly predictive bot signature:
We thus identified the top 10 most informative account metadata features
(see SI Appendix for details). Off-the-shelf learning models were trained on
multiple historical ground truth datasets and achieved high detection accu-
racy (>90%) on cross-validation benchmarks. Logistic regression (LR), our
reference model for this study, was selected for its best trade-off between
scalability and accuracy: The model is very precise at detecting human
accounts—precision rate (PR) 98%, compared with bot accounts (PR: 92%),
while detecting nearly all existing bots—recall rate (RR) 99%, compared
with human users retrieval (RR: 88%). Furthermore, LR provides binary clas-
sifications, rather than continuous probabilistic scores—for example, like
Botometer does (20)—simplifying the interpretability of resulting annota-
tions without hampering classification accuracy. Finally, random samples of
inferred bot and human labels were manually scrutinized for a sanity check.
All bot-detection methods have some inherent limits (e.g., dependency on
quality and size of training data and model generalizability) that we mit-
igated by using domain knowledge and state-of-the-art techniques (see SI
Appendix for additional discussion).

Building the Twitter Network. People from the same faction tend to retweet
each other as a form of social endorsement, as documented in the relevant
literature (23), while cross-faction retweets are less likely. Considering that,
only retweets would pose the question of how to get rid of spurious or
infrequent interactions, possibly by identifying a given retweet threshold.
Identifying a threshold would be problematic, as the final network structure
might greatly vary with small perturbations on the considered threshold, as
can happen on co-occurrence networks (34). We address this issue by consid-
ering strong social interactions: Twitter interactions where users perform at
least one retweet but also at least another type of Twitter interaction, be it
a mention or a reply during the considered time window. Notice that men-
tions and replies do not express the same social endorsement of retweets,
but they can help in identifying the core interactions in the considered
social system. The resulting Twitter Core Network (TCN) included 12,000
users, and 16,000 directed strong social interactions. Notice that the TCN
aggregates interactions happening over the whole considered time window.
However, the frequency of Twitter interactions strongly correlates with the
indegree on the TCN (Kendall tau τ = 0.81), thus indicating that the aggre-
gated network topology is a valid proxy for investigating patterns of Twitter
interactions.

PageRank Centrality of Humans and Bots. In the TCN, we used the aver-
age PageRank (25) as a measure of centrality of human and bot users
quantifying how important individual nodes are for information flow in
a given network topology. We computed PageRank centrality in Mathe-
matica, which provides normalized values indicating the probability of a
random walker to visit a given node. We used 0.85 as dampening factor,
as in Google’s PageRank. On average, human users displayed a PageRank
of 8.1 × 10−4, while bots displayed an average PageRank of 4.6 × 10−4.
Hence, on average, human users tended to be almost 1.8 times more central
than bots in terms of information flow on the TCN.

Network Partitioning. To detect the two groups in the TCN, we used the
Fiedler vector, a widely used heuristic in spectral graph partitioning (35).
The Fiedler vector of a given graph is the eigenvector corresponding to
the smallest nonzero eigenvalue (i.e., the algebraic connectivity) of the
Laplacian matrix L = D−A of the graph represented by the adjacency
matrix A and by the diagonal matrix D. Negative and positive entries
in the Fiedler vector partition the corresponding network nodes in two
sets. One can prove analytically that this heuristic for graph partitioning
is a valid approximation for solving the minimum cut problem on general
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graphs (i.e., partitioning nodes in two groups so that the number of edges
across groups is minimized). We applied spectral clustering on the undi-
rected version of the TCN and then built randomized partitions. Through
direct sampling, we show that the modularity of the Fiedler’s partition-
ing is optimal compared with randomizations, even on the original TCN (SI
Appendix).

Building the Hashtag Co-Occurrence Network. Hashtags are strings of char-
acters starting with the hash (#) character and representing the main
semantic content of a tweet (36). The literal meaning of hashtags is already
considered in the sentiment analysis. Co-occurrence of different hashtags
can provide important additional information on the semantic content of
tweets, as it was recently shown (37). Analogously to other association

networks in psycholinguistics (27, 28), networks of hashtag co-occurrences
represent a powerful proxy of the cognitive profile of users (i.e., the way
concepts are perceived and associated by users). From our Twitter dataset,
we build semantic networks of hashtag co-occurrence where nodes repre-
sent hashtags and they are linked when co-occurring in at least one tweet.
This network definition is in agreement with previous large-scale studies
(37). We build one network of hashtag co-occurrences per group. The group
1 (group 2) co-occurrence network includes 8,451 (7,107) unique hashtags
and 29,694 (23,644) links. The two networks overlap for 4,132 hashtags, on
which the consistency analysis is performed (SI Appendix).
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